
Abstract. By using a parameterised Heisenberg Hamil-
tonian coupled to a molecular mechanics force field,
excited-state geometries were optimised for three
conjugated hydrocarbon radicals: cyclopentadienyl,
phenalenyl (perinaphthenyl), and triphenylmethyl. The
results are compared with ab initio calculations, and
with recent spectroscopic measurements.
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1 Introduction

In a recent perspective article [1] on the 1974 paper by
Paldus [2] that introduced the unitary group approach
into quantum chemistry, it was noted that this theory
was becoming inaccessible to recently trained quantum
chemists. The following reason was suggested: that once
the insights described in Ref. [2] and related papers
were obtained, code development and applications
could proceed without the need to fully understand the
mathematics (group theory) that led to these insights in
the first place. Part of the purpose of this paper is to
show that the graphical unitary group approach [3,4]
devised by Shavitt [5,6] can be applied [7,8] in a simpler
pictorial form to the valence bond (VB) method
formulated as a Heisenberg Hamiltonian [9,10]. In doing
this, we concentrate on the diagrams which both solved
the problem originally and which were used subse-
quently to design the working computer code. Although
there are many other codes for spin-only Hamiltonians

[9, 22, 23, 24, 25, 26], and part of this work has been
described previously [11], the pictorial method was not
emphasised. When we reexamined the diagrams used in
Ref. [11] recently and developed this presentation, we
realised how they and our corresponding code could be
modified to describe systems with an odd numbers of
spins (as previously implemented in e.g. Ref. [9]),
making the applications described later possible.

The matrix element code described here is included
in the molecular mechanics – VB (MMVB) program
[11,12]. Here, a parameterised Heisenberg Hamiltonian
(describing an ‘‘active space’’ analogous to Complete-
active-space self-consistent field, CASSCF) is coupled to
an MM force field, making calculations on the ground
and valence excited-states of large conjugated hydro-
carbons possible. The results of excited-state geometry
optimisations for three hydrocarbon radicals [13] are
presented, as a test of MMVB with the modified matrix
element code:

Cyclopentadienyl [14] (Five active electrons), a
Jahn–Teller system which has been extensively studied
experimentally.
Phenalenyl [15] (13 active electrons), recently crystal-
lised in a spiro structure which is a neutral radical
conductor [16].
Triphenylmethyl [17] (19 active electrons), the original
hydrocarbon radical synthesised by Gomberg [18],
whose photochemistry has recently been studied.

Our results are compared with CASSCF and time-
dependent density functional theory (TDDFT) calcula-
tions where possible, and with recent spectroscopic
studies.

2 Theory

The aim of this section is to show how VB matrix
elements can be calculated pictorially, without explicitly
using group theory [1]. We begin with a review in simpler
language, based on Ref. [11]. We then describe how this
approach was modified to describe systems with an odd
numbers of spins.
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The pictorial representation of the VB basis functions
and matrix elements described later is based on but is far
simpler than the one originally described by Shavitt [5,6],
because in the VB case all orbitals are singly occupied,
with either a or b spin. The VB Hamiltonian we are
constructing is therefore a Heisenberg Hamiltonian.
Although we are not using group theory explicitly, we
use three key concepts derived from the group theoret-
ical approach:

Representing many-electron basis functions graphi-
cally.
Associating a unique and predictable index with each
basis function.
Using an integral-driven approach to compute non-
zero offdiagonal matrix elements directly, without
explicitly constructing the Hamiltonian matrix.

These three concepts are treated in turn later.

We start with Pascal’s triangle (Fig. 1, top) [19], the
arrangement in which each number at a particular hor-
izontal level is the sum of the two numbers immediately
above it. Notice that we have superposed Pascal’s tri-
angle over a grid: each number in the triangle is then the
number of different ways of moving up from the corre-
sponding point on the grid along the diagonals to the
top, visiting each horizontal level only once.

Fig. 1 (middle) shows that a subset of the Pascal’s
triangle grid can support the basis functions of a Hei-
senberg Hamiltonian: in this case, four singly occupied
orbitals with either a or b electron spin. Starting at level
zero, we add a and b electrons – two of each in this case
– by moving in the up-left (a spin) and up-right (b spin)
directions on the grid. For four electrons, the six
resulting basis functions (actually Slater determinants)
are shown at the bottom of Fig. 1. The first basis func-
tion shown is one for which orbitals 1 and 2 contain a
electrons, and orbitals 3 and 4 contain b electrons. Each
basis function has a total spin of zero; it is this restriction
on the total spin that means we use the subset of Pascal’s
triangle shown.

The ordering of the basis functions at the bottom of
Fig. 1 is intentional, because the sequence numbers
shown can also be generated from a different grid based
on Pascal’s triangle, shown middle right. This grid
contains offsets, which are added to the sequence num-
ber if a basis function moves in the up-right (b spin)
direction from a particular point. Basis function 5 is
shown as an example (Fig. 1, bottom): it moves in the
up-right direction from levels 0 and 2; the corresponding
offsets from the middle right grid are 3 and 1; the total
offset is 4; and the final sequence number (starting at 1,
not 0) is 5. The offset at any point on the grid is the total
number of walks to the top which start in the up-left
direction from that point. Equivalently, the offset is the
total number of walks to the top from the point up-left
of the present one, which explains why the particular
subset of Pascal’s triangle (shown by the hatched lines in
Fig. 1) is used. It also explains why the offsets are only
added to the sequence number when moving in the
up-right direction.

So far, we have shown that the basis functions of the
Heisenberg Hamiltonian can be represented graphically,
and that a unique sequence number can be associated
with each. Moreover, these unique sequence numbers
are predictable (not random) because of the ordering
described previously. The basis functions can therefore
be generated ‘‘in sequence’’, and a particular basis
function can be thought of as being ‘‘to the left of’’ or
‘‘to the right of’’ another on the grid (Fig. 1, bottom).
This idea is central to the efficient evaluation of the
offdiagonal matrix elements, described next.

The full Heisenberg Hamiltonian matrix for the four-
electron problem introduced in Fig. 1 is shown in Fig. 2.
The basis functions are in the same order 1 to 6, but
written in a new notation, where 1 2 3 4 means that
orbitals 1 and 2 contain a electrons, and orbitals 3 and 4
contain b electrons. The matrix elements shown in Fig. 2
were generated explicitly from Slater’s rules. We con-
centrate on the off-diagonal matrix elements to start
with. These occur when there are two spin-orbital dif-
ferences between basis functions, and result in an inte-
gral indexed Kij ¼ ðijjijÞ (having the numerical value
½ijjij� þ 2 < ijhjj > Sij for the VB problem [10]). For
example, comparing basis functions 1 and 2, there is a
difference between the spins of orbitals 2 and 3, leading
to the integral K32 ¼ ð32j32Þ. There are also a number of
zeros in off-diagonal positions, where the difference
between basis functions is greater than two spin orbitals.

Fig. 1. Using Pascal’s triangle to generate basis functions for a
four-electron Heisenberg Hamiltonian
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The same Hamiltonian matrix as in Fig. 2 is shown in
Fig. 3, but represented graphically by superimposing the
walks from the bottom of Fig. 1. The nonzero offdiag-
onal matrix elements now appear as closed loops or
boxes, which have been shaded in the figure. The matrix
element K32 discussed earlier now appears as a box
which opens from level 1 to level 2 (difference in electron
2 spin) and closes from level 2 to level 3 (difference in
electron 3 spin). For spin orbitals which are the same,
the corresponding walks either coincide — as for K32,
above and below the box — or move in parallel, to ex-
tend the box diagonally up-left and/or up-right. Zero
offdiagonal matrix elements have been crossed out in
Fig. 3: these correspond to differences of more than two
spin orbitals between basis functions, and are repre-
sented by boxes which are either greater than one square
wide on the grid, or which open and close more than
once (both shown).

By itself, Fig. 3 does not lead to a more efficient
algorithm for evaluating offdiagonal VB matrix ele-
ments. The current four-electron example hints at how
this might be achieved, but to appreciate it, we have to
imagine what happens as the number of electrons is
increased.

In the four-electron example, there are a number of
zero offdiagonal matrix elements (Figs. 2, 3). These

increase in proportion rapidly as the number of electrons
increases, so generating only the nonzero elements is
advantageous. Fig. 2 shows that the matrix element K21

is generated between basis functions 4,2 and 5,3 but it is
Fig. 3 which shows that these are both represented by
the same box pattern. Moreover, because of the indexing
scheme used, all of the possible shared walks from the
top of this box run in sequence, and could be looped
over. In general, a box will share many upper and/or
lower walks, and there are few boxes relative to the
number of pairs of basis functions that generate them.
Hence a box(loop/shape/integral/K)-driven approach for
generating offdiagonal matrix elements is very efficient:
the box can be generated once, then all of the walks
it shares can be looped over and the corresponding
contributions to the Hamiltonian obtained.

Figure 4 shows that the nonzero offdiagonal matrix
elements for the four-electron (n) problem (from Fig. 3)
can actually be generated using walks from the two-
electron ðn� 2Þ problem [11] as a guide. The two-elec-
tron walks are shown far left: each step in generating
them is superposed on the four-electron problem
towards the right, with a shaded square on the n grid
around each point on an n� 2 walk.

Figure 4 also shows that, once generated this way,
K31 generates K32, and K41 generates K42 and K43 by

Fig. 2. The full Heisenberg
Hamiltonian matrix for the four-
electron problem introduced in
Fig. 1. Notation: underlining ¼ a
spin. (ij|ij) indexes an integral
having the numerical value
½ijjij� þ 2 < ijhjj > Sij for the
Valence bond (VB) problem [10]
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‘‘collapsing’’ boxes to form a shared lower walk. All
possible common upper walks are determined for each
box/Kij, as shown for K21. There are two caveats.
Firstly, Fig. 4 shows that the matrix element K32

between basis functions 1,2 and 5,6 corresponds to two
distinct boxes, which are generated independently.
Secondly, although the two occurences of K43 in Fig. 4
are represented by the same box, they are also gener-
ated independently at the present time: the algorithm
currently generates all common upper walks (e.g. for
K21) but generates lower n walks from the n� 2 walk
which led to this point.

One feature missing from the discussion of the four-
electron problem so far is symmetry. The grid generated
from Pascal’s triangle in Fig. 1 is symmetric about the
vertical axis, and the pairs of basis functions at the
bottom of Fig. 1 (1–6, 2–5, 3–4) are mirror images of
each other. By working with only one of these pairs
explicitly and treating the other implicitly [20], consid-
erable savings can be made for larger problems, and in
fact our original VB matrix element code [11] never
constructed the full Slater basis. The reason for not
emphasising symmetry here is that the full Slater basis
must be constructed for the odd-electron problems dis-
cussed later, and the symmetry just described is broken.

However, having broken this symmetry, and by using
the grid representation described earlier, the extension of
our VB matrix element code to odd numbers of electrons
is straightforward. The sections of Pascal’s triangle
necessary to generate the grids for the five-electron
problem are shown in Fig. 5. We now have one more a
electron than b electron, but otherwise the grids are
generated in exactly the same way. The resulting ten
walks (basis functions) are shown at the bottom of
Fig. 5, and the corresponding matrix elements in the
supplementary material.

In summary, the method reviewed for generating the
matrix elements of an n-electron Heisenberg Hamilto-
nian consists of three steps:

1. Generate n and n� 2 grids from Pascal’s triangle.
2. Generate all possible basis functions (walks) from the

n grid. The diagonal matrix elements Kij are then
generated from permutations within the a and b spins
for each basis function.

3. Generate all possible walks for the n� 2 problem.
This gives offdiagonal matrix elements Kij for the n
problem.

3 Computational methods

The matrix element code described here has been used in two ways,
depending on how the numerical values of Qij and Kij for the
Heisenberg Hamiltonian were determined.

Firstly, for testing, we used a standalone version of the code
that reads in the Kij between individual spin sites. We initially used
‘‘Huckel-like’’ parameters [21] describing connectivity, with
Kij ¼ 1:0 between adjacent spin sites. There are several other
implementations of this type of code [22,23,24,25,26].

The Lanczos diagonalisation method – iterative improvement
of a guess for the lowest few eigenvectors – is used to avoid storing
the full Hamiltonian matrix. The results were checked against full
diagonalisation up to 13 spins (1716 determinant basis functions) to
confirm that roots were not being missed. The starting guess for the
Lanczos diagonalisation is determined by the largest diagonal
contributions, with a small even or odd number chosen, depending
on whether the number of electrons and the total number of basis
functions generated is even or odd.

Fig. 3. The same Hamiltonian matrix as in Fig. 2, represented
graphically by superimposing the walks from the bottom of Fig. 1.
Off-diagonal exchange matrix elements Kij – shown by shaded
boxes – occur when there are two spin-orbital differences between
basis functions

Fig. 4. The nonzero off-diagonal matrix elements shown as shaded
boxes in Fig. 3 can be generated by following walks for a system
with two fewer electrons
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The new direct matrix element code was tested against one
which reads a file of symbolic matrix elements produced elsewhere
[27], filtered to give matrix elements between perfect-pairing VB
basis functions only. Both Slater determinant and spin-adapted
CSF bases were generated this way, checking that they gave the
same energies for the appropriate states.

As a further test, we checked the symmetry of the Pij ‘‘spin
exchange’’ density matrix [11,30]:

Pij ¼
X

KL

CK CLC
KL
ij � 1 � Pij � 1

Here, CK is the expansion coefficient of basis function K for a
particular state, i and j are active orbitals and CKL

ij are spin-coupling
coefficients (±1 for the Slater determinant basis). The nonzero
spin-coupling coefficients are determined to within a sign by the
graphical method described in the Theory section. If the molecule
has, for example, D3h symmetry (phenalenyl D0), does the Pij? The
Pij matrix has also proved very useful in the past because it can be
used to label a particular ‘‘electronic isomer’’, and thus characterise
a state regardless of whether it is for example D0 or D1 at a par-
ticular geometry [30]. Furthermore, the Pij are related to the total
spin [28,29] by

hS2i ¼ �NðN � 4Þ
4

�
X

ij

Pij ;

where N is the number of electrons.
The next tests used MMVB to evaluate Qij and Kij. MMVB [12]

is a hybrid QM/MM method, which uses the MM2 potential [31]

to describe the inert r-bonded molecular framework. The active
electrons – those involved in conjugation or new r-bond formation –
are represented by a Heisenberg Hamiltonian [10,32] in the space of
neutral VB configurations. Because of this, the MMVB method can
only treat covalent states at present, and the active sites are currently
only parameterised for sp2/sp3 carbon atoms.

Using effective Hamiltonian theory, a CASSCF wave function
with localised active orbitals can be projected onto the space of
neutral valence-only VB structures [10], and interpreted as a Hei-
senberg Hamiltonian [9,26,32]. Heisenberg-like VB Hamiltonians
are particularly suitable for parameterisation, because of the
distance and orientation dependence of their matrix elements Qij
and Kij (like those in the Heitler–London VB treatment of the H2

molecule [33,34]) which leads to formulae which are evaluated
analytically in MMVB [12].

Finally, MMVB energies and geometries were compared with
the results of ab initio calculations. For CASSCF calculations, we
used MOLPRO [35] for phenalenyl to take advantage of D3h=C2v
point group symmetry. CASSCF calculations were run using the
4-31G basis set, as this was the one used to parameterise MMVB
originally. TDDFT [36] calculations were run with Gaussian [27],
using the hybrid B3LYP functional and the 6-31G* basis set.

4 Results

4.1 Cyclopentadienyl

The cyclopentadienyl radical is an example of a conical
intersection enforced by symmetry: a Jahn–Teller cross-
ing [37,38,39]. The degenerate 2E001 ground state at D5h
geometries distorts to give the alternating C2v minima
(M) (2B2 electronically) and saddle points (TS) (2A2)
illustrated in Fig. 6 [40].

Cyclopentadienyl has been extensively studied
experimentally by Yu and coworkers [14,41,42,43] and
others [44] over the last decade. We have previously [45]
calculated the critical points on the D0 and D1 potential-
energy surfaces shown in Fig. 6 using CASSCF/
cc-pVDZ. We also briefly discussed the problems which

Fig. 5. Using Pascal’s triangle to generate basis functions for a five-
electron Heisenberg Hamiltonian (c.f. Fig. 1)

Fig. 6. Cyclopentadienyl: molecular mechanics VB (MMVB)-
optimised minima (M), transition structures (TS) and Jahn–Teller
crossing (X) on the D0 and D1 potential energy surfaces. Bond
lengths in angstroms; energy differences in reciprocal centimetres
(CASSCF/cc-pVDZ values in parentheses, taken from Ref. [45].)
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arise [46] in trying to compare these geometries directly
to those obtained from experiment.

The cyclopentadienyl structures optimised with
MMVB are also shown in Fig. 6. MMVB reproduces the
CASSCF bond lengths (in parentheses) to within ±2%.
The larger errors are for bond lengths around 1.5Å, which
are weakly p-bonded and appear to be less well described
by the parameterisedVB calculation.One bond length can
be checked directly against experiment: for the D5h Jahn–
Teller crossing X, a C–C bond length of 1.421Å was
determined by Yu et al. [14]. Both MMVB and CASSCF
[45] reproduce this well.

We now discuss the relative energies of M, TS and X.
Early electron spin resonance spectra at 120 K suggested
that the spin distribution around the cyclopentadienyl
ring was uniform [47, 48], implying that the barrier height
for pseudorotation [49] between the five equivalent min-
ima was of the order of reciprocal centimetres, resulting
in a time-averaged D5h structure. The MMVB (18 cm)1)
and CASSCF (3.6 cm)1) results for the MfiTS ‹ M
barrier are both consistent with this, and both methods
predict that the dienylic structure is theD0minimumM in
agreement with previous calculations [50,51]. The energy
barrier around the ‘‘moat’’ [37] is much smaller than the
stabilisation energy due to the static Jahn–Teller distor-
tion from the D5h geometry X, which is 2530 cm)1 with
MMVB and 2100 cm)1 with CASSCF.

Energy and gradient calculations with MMVB are
many orders of magnitude faster than with CASSCF,
making direct dynamics simulations (avoiding prior fit-
ting of a potential energy surface [52,53]) feasible [54].
The main reason for studying cyclopentadienyl with
MMVB is to be able to investigate the dynamics of a
Jahn–Teller system this way. Given the differences in
energetics between MMVB and CASSCF described
previously, it may be that the current MMVB parame-
terisation is not accurate enough for dynamics; however,
it is now possible to refine this parameterisation for a
particular molecule [55], a procedure that was success-
fully used to model the photochemical decay pathways
of cis-butadiene with direct dynamics [56].

4.2 Phenalenyl

Highly resolved excitation and emission spectra of
phenalenyl in n-pentane at 20 K were reported in 1984
[15]. The crystal structure of the 2,5,8-tri-tert-butyl
phenalenyl radical was recently obtained [57], in which
the molecule forms a p-dimeric pair (3.3 Å separation)
with a staggered arrangement of tert-butyl groups avoid-
ing steric repulsion. Ab initio calculations were used
[58] to investigate the strong antiferromagnetic coupling
of the dimeric pair [59,60], but no geometry optimisations
were carried out [61].1 Interest in phenalenyl has
recently increased further with the characterisation of a
spiro-biphenalenyl radical as a prototype neutral radical
molecular conductor [16] which has now been shown to
be electrically, optically, andmagnetically bistable [62,63].

Phenalenyl is an odd alternant radical [64] with 13
p electrons. Fig. 7 shows that MMVB and CASSCF/
4-31G both predict it to have the same D3h ground-state
structure, with bond lengths varying from 1.40 to 1.43 Å.
The bond lengths predicted by MMVB and CASSCF
agree to within ±0.01 Å, and are within ±0.005 Å of
those calculated with B3LYP/6-31G* (not shown). This
agreement between a range of theoretical methods sug-
gests that the bond lengths we calculate are reliable.
However, the bond alternation calculated for D0 phe-
nalenyl is less than that of 1.37–1.42 Å predicted from
the crystal structure of the p dimer [57], which was
compared to the alternation found in naphthalene. We
also found this wider range of bond lengths in naph-
thalene with MMVB [11] in agreement with previous
CASSCF calculations [65]. However, for the isolated
phenalenyl radical, our calculations appear to show that
the three rings of phenalenyl are more benzene-like in
the ground state than the two rings in naphthalene.

MMVB and CASSCF also predict very similar values
for the vertical excitation energies of phenalenyl: 57.6
and 61.7 kcal mol)1, respectively. (The corresponding
TDDFT value, using B3LYP/6-31G*, is 63.7 kcal
mol)1). As suggested by Cofino et al. [15], the first ex-
cited state with the same spin multiplicity as the ground
state is a degenerate Jahn–Teller pair. With MMVB,
these are not the first excited states: we also find a state
with spin multiplicity 3.75 (three unpaired spins), 4.4
kcal mol)1 below the degenerate pair.2

Fig. 7 also shows the minima M, D1, and transition
structures TS, D1 which surround the excited-state
Jahn–Teller crossing. With CASSCF, it was straight-
forward to optimise these structures – which both have
C2v symmetry – by constraining the wavefunctions to
have either A2 or B2 symmetry. With MMVB, this was
not possible, and the existence of the state with three
unpaired spins presented an additional problem. The
solution was to look at the spin density matrix Pij
computed near the D3h vertically excited geometry for
the two states of the Jahn–Teller pair, to determine
whether the p bonds would extend or contract on
relaxation away from the degeneracy. Different distor-
tions were determined for each state, and a small initial
displacement in the appropriate direction meant that M,
D1 or TS, D1 could be optimised on the first excited
state. The resulting MMVB geometries agree fairly well
with those obtained with CASSCF, although a number
of bond lengths are outside the ±0.01 Å tolerance.

With optimised excited-state geometries M, D1 and
TS, D1, several relative energies can be compared be-
tween MMVB and CASSCF, and there is good agree-
ment for each. Fig. 7 shows that the relaxation energies
from the D3h D0* geometry to the C2v minima and TS
are comparable, with the MMVB values being larger.
MMVB also overestimates the barrier to ‘‘pseudo-
rotation’’ around the Jahn–Teller moat (further illustrated

1 There are DFT calculations of the electron affinity of perinaph-
thenyl=phenalenyl, but no optimised geometries were reported.

2 The same pattern of states/spin multiplicities is also obtained with
Huckel-like parameters (1.0 coupling between adjacent spin sites) in
the standalone Heisenberg Hamiltonian calculation, which with
1716 determinant basis functions is currently near the limit for tests
involving full diagonalisation of the Hamiltonian.
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in the supplementary material), with a value of 0.5 kcal
mol)1 to compare with 0.1 kcal mol)1 for CASSCF.
Finally, the 0-0 transition was found to be 18679
cm)1 ¼ 53.4 kcal mol)1 from high-resolution laser
spectroscopy [15]; MMVB predicts 52.3 kcal mol)1 and
CASSCF 58.1 kcal mol)1. This agreement is perhaps
surprising because of the small one-electron basis set
(4-31G) used; however, we have previously shown that
for planar geometries [11,66] of the valence excited states
for which MMVB is valid, large basis sets are not always
necessary [67]. MMVB was originally parameterised
from 4-31G CASSCF calculations, which is why 4-31G
was used for the CASSCF calculations described here.

In summary: The MMVB, CASSCF, and TDDFT
results are in good agreement for phenalenyl, and the
predicted excitation energies are comparable with
experiment. These are the first ab initio calculations on
the excited states of phenalenyl.

4.3 Triphenylmethyl

The triphenylmethyl radical was originally characterised
by Gomberg [18]. Experimentally, the D0-D1 absorption

is weak [13] but is detected at 440 nm [17]; kmax is at 337
nm. Temperature-dependent fluorescence is detected
at 520 nm [68], Ea ¼ 4.6 kcal mol)1. Solution excitation
at room temperature does not give emission on the
nanosecond timescale [68,69,70]. Instead, a ring-closure
reaction pathway opens up, as shown in Scheme 1 [17].
The resulting DHPM radical is detected within 10 ns,
has a 100-ls lifetime, and absorbs at 490 nm [71].

Triphenylmethyl is a 19-electron p system, which is
nonplanar because of steric repulsion between the three
benzene rings. It was chosen as a test case here because it
is a radical with a barrier-activated channel for radia-
tionless excited-state decay, leading to a chemical reac-
tion (ring closure [17,71]). MMVB can describe the
formation of new r bonds from p orbitals in a p system.
However, we encountered some problems here with the
parameterisation of the terms in the Heisenberg Ham-
iltonian needed to describe this new bond formation:
specifically, the behaviour of the formulae for deter-
mining Qij at long range (beyond 2.5 Å), which do not
tend to zero smoothly. To try to minimise the problem,
we included only the Qij terms necessary to describe the
formation of the one new r bond (Scheme 1). The
compromise here is that the D0 minimum of triphe-
nylmethyl (Fig. 8) no longer has the correct D3 point
group symmetry because of the unsymmetric potential,
and we must use the same potential throughout for
consistent energetics. Reassuringly, when the extra term
in the MMVB potential is removed, Mopen, D0 has the
correct D3 symmetry, and the bond lengths are all within
±0.01 Å of the B3LYP/6-31G* (Fig. 9) values. The
remaining critical points (Fig. 8) only have C2 symme-
try, so the problem is not as obvious. Calibration against
CASSCF calculations is unfortunately not possible at
present for triphenylmethyl because the necessary active
space is too large, so we cannot estimate what effect the
problems in the MMVB potential have on the relative
energetics.

Fig. 8 shows critical points located with MMVB on
the D0 and D1 potential energy surfaces of triphenylm-
ethyl. There are closed and open minima on both sur-
faces, and a D1/D0 conical intersection [72,73] that is
midway between the two. For the open form, the D1

excitation is strongly localised in two of the benzene
rings, reminiscent of one of the excited-state structures
previously located with MMVB for cis-stilbene [74]. The
triphenylmethyl conical intersection is also similar to the
‘‘cooperating rings’’ crossing located in cis-stilbene: here,
one ring is a passive spectator and a new bond is formed
between the other two, which now have localised single
and double bonds.

Fig. 7. Phenalenyl: MMVB-optimised structures on the D0 and D1

potential energy surfaces. Bond lengths in angstroms (only unique
bond lengths are shown); energy differences in kilocalories per
mole. CASSCF/4-31G values in parentheses

Scheme 1.
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The relative energetics of the critical points shown in
Fig. 8 are indicated in Fig. 10. This figure is derived
from linear interpolations on the D0 and D1 potential
energy surfaces. This will give upper bounds to any en-
ergy barriers between points, although it is approximate,
and it is important to note that the interpolation coor-
dinates used on D0 and D1 are different.

Several energy differences from Fig. 10 can be com-
pared with experiment. The barrier from Mopen, D1 to
the crossing X D1/D0 is calculated to be 14 kcal mol)1.
This is larger than the experimentally-estimated barrier
for the radiationless channel leading from open to closed
forms of 4.6 kcal mol)1. Secondly, we can identify the
520 nm (�55 kcal mol)1) fluorescence of the open form
with the energy difference between Mopen, D1 and Mopen,
D0. With MMVB, we calculate this value to be 44 kcal
mol)1, regardless of whether the potential includes the
term necessary to describe the new r bond. Finally, if the
440 nm (around 65 kcal mol)1) absorption of triphe-
nylmethyl corresponds to the vertical excitation to D1,
MMVB underestimates this by 19 kcal mol)1. Although

there are known problems with determining vertical
excitation energies, a TDDFT (B3LYP/6-31G*) calcu-
lation at the Mopen, D0 geometry shown in Fig. 9 pre-
dicts a vertical excitation energy to D1 (low intensity,
f ¼ 0.0087) of 67 kcal mol)1, which is close to the
experimental value. If we have identified the transitions
correctly, MMVB does not appear to describe the energy
differences in the nonplanar triphenylmethyl as well as in
the planar cyclopentadienyl and phenalenyl radicals.

In summary: We have located a reaction path from
the excited-state open form of triphenylmethyl to the
closed form directly via a conical intersection, which is
consistent with the observed barrier-activated radia-
tionless decay. However, we are not yet certain that this
is the reactive state, because of problems with the
MMVB potential, and there is a chance that we are
calculating ‘‘dark’’ states which are not observed spec-
troscopically.

5 Conclusion

A pictorial method for generating Heisenberg Hamilto-
nian matrix elements was described, reviewing [11]. The
code is basically in three parts:

1. Generate n and n� 2 grids based on Pascal’s triangle.
2. Generate all possible n walks ) diagonal matrix

elements.
3. Generate all possible n� 2 walks ) offdiagonal

matrix elements for the n problem.

There are many other codes for generating such matrix
elements [9,22,23,24,25,26]. Part of the reason for

Fig. 8. Triphenylmethyl:
MMVB-optimised structures on
the D0 and D1 potential energy
surfaces. Bond lengths in angst-
roms. Only unique bond lengths
are shown, as all structures have a
C2 symmetry axis. (Mclosed, D0

does not have the expected C3

symmetry because of a long-range
defect in the MMVB parameters
necessary to describe the
formation of the new r bond, as
discussed in the text)

Fig. 9. Triphenylmethyl: open and closed minima on D0 optimised
with B3LYP/6-31G*. Bond lengths in angstroms
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reviewing this pictorial approach is that we believe it will
be straightforward to extend it to, for example, electron-
transfer systems, with n electrons singly occupying nþ 1
orbitals.

The matrix element code described here is included in
the MMVB program [12]. Test calculations for odd-
electron systems were carried out on the excited states of
three conjugated hydrocarbon radicals: cyclopentadienyl
and phenalenyl (planar); and triphenylmethyl (nonpla-
nar). For the planar radicals, energies and geometries
computed with MMVB agreed closely with those ob-
tained with CASSCF. For triphenylmethyl, no com-
parison with CASSCF is currently possible. The conical
intersection geometry predicted for triphenylmethyl by
MMVB is consistent with the observed experimental
data, explaining the barrier-activated radiationless de-
cay. However, the energetics are marred by problems
with the MMVB parameterisation.

This paper is not about parameters in the MMVB
force field, but the numerical values of Qij and Kij have
to be obtained somehow, and practical applications
are at present mainly limited by the quality of these
parameters. Some progress on improving these has
recently been made [55].
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